85 research outputs found

    An Ontology-Based Expert System for the Systematic Design of Humanoid Robots

    Get PDF
    Die Entwicklung humanoider Roboter ist eine zeitaufwendige, komplexe und herausfordernde Aufgabe. Daher stellt diese Thesis einen neuen, systematischen Ansatz vor, der es erlaubt, Expertenwissen zum Entwurf humanoider Roboter zu konservieren, um damit zukünftige Entwicklungen zu unterstützen. Der Ansatz kann in drei aufeinanderfolgende Schritte unterteilt werden. Im ersten Schritt wird Wissen zum Entwurf humanoider Roboter durch die Entwicklung von Roboterkomponenten und die Analyse verwandter Arbeiten gewonnen. Dieses Wissen wird im zweiten Schritt formalisiert und in Form einer ontologischen Wissensbasis gespeichert. Im letzten Schritt wird diese Wissensbasis von einem Expertensystem verwendet, um Lösungsvorschläge zum Entwurf von Roboterkomponenten auf Grundlage von Benutzeranforderungen zu generieren. Der Ansatz wird anhand von Fallstudien zu Komponenten des humanoiden Roboters ARMAR-6 evaluiert: Sensor-Aktor-Controller-Einheiten für Robotergelenke und Roboterhände

    The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft

    Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hands

    Get PDF
    Hand prostheses should provide functional replacements of lost hands. Yet current prosthetic hands often are not intuitive to control and easy to use by amputees. Commercially available prostheses are usually controlled based on EMG signals triggered by the user to perform grasping tasks. Such EMG-based control requires long training and depends heavily on the robustness of the EMG signals. Our goal is to develop prosthetic hands with semi-autonomous grasping abilities that lead to more intuitive control by the user. In this paper, we present the development of prosthetic hands that enable such abilities as first results toward this goal. The developed prostheses provide intelligent mechatronics including adaptive actuation, multi-modal sensing and on-board computing resources to enable autonomous and intuitive control. The hands are scalable in size and based on an underactuated mechanism which allows the adaptation of grasps to the shape of arbitrary objects. They integrate a multi-modal sensor system including a camera and in the newest version a distance sensor and IMU. A resource-aware embedded system for in-hand processing of sensory data and control is included in the palm of each hand. We describe the design of the new version of the hands, the female hand prosthesis with a weight of 377 g, a grasping force of 40.5 N and closing time of 0.73 s. We evaluate the mechatronics of the hand, its grasping abilities based on the YCB Gripper Assessment Protocol as well as a task-oriented protocol for assessing the hand performance in activities of daily living. Further, we exemplarily show the suitability of the multi-modal sensor system for sensory-based, semi-autonomous grasping in daily life activities. The evaluation demonstrates the merit of the hand concept, its sensor and in-hand computing systems

    The Ursinus Weekly, January 11, 1965

    Get PDF
    Football players receive awards at banquet: Tony Motto gets All-ECAC • Ursinus to send delegation to Model UN • Weekly names Sam Walker sports editor • Faculty Forum to present concert, lecture recital: 20th century American music, subject • Three placed in teaching positions • Pre-meds to hear two Sacred Heart pathologists • World\u27s Fair invites college talent to perform • Pi Nu Epsilon, music fraternity, initiates eight • Norristown man named to vacancy in Treas. Office • Good band, decorations add to great TG dance • The best TV show in the world • Editorial: Our large small college • Bob Dylan: Alone and indifferent • J. D. Salinger writes for The Ursinus Weekly • Anthem, a warning to society • The Doanes report on teaching in the South • Bears drop two, F&M-Swarthmore; Troster\u27s thirty points rock PMC • Matmen drop opener to Del. • Soccer team puts three on All-MAC • Y Commission sponsors film on discrimination • Greek gleanings • Letters to the editor • Kaffee Klatsch debates Negro block bustinghttps://digitalcommons.ursinus.edu/weekly/1238/thumbnail.jp

    FlexOracle: predicting flexible hinges by identification of stable domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein motions play an essential role in catalysis and protein-ligand interactions, but are difficult to observe directly. A substantial fraction of protein motions involve hinge bending. For these proteins, the accurate identification of flexible hinges connecting rigid domains would provide significant insight into motion. Programs such as GNM and FIRST have made global flexibility predictions available at low computational cost, but are not designed specifically for finding hinge points.</p> <p>Results</p> <p>Here we present the novel FlexOracle hinge prediction approach based on the ideas that energetic interactions are stronger <it>within </it>structural domains than <it>between </it>them, and that fragments generated by cleaving the protein at the hinge site are independently stable. We implement this as a tool within the Database of Macromolecular Motions, MolMovDB.org. For a given structure, we generate pairs of fragments based on scanning all possible cleavage points on the protein chain, compute the energy of the fragments compared with the undivided protein, and predict hinges where this quantity is minimal. We present three specific implementations of this approach. In the first, we consider only pairs of fragments generated by cutting at a <it>single </it>location on the protein chain and then use a standard molecular mechanics force field to calculate the enthalpies of the two fragments. In the second, we generate fragments in the same way but instead compute their free energies using a knowledge based force field. In the third, we generate fragment pairs by cutting at <it>two </it>points on the protein chain and then calculate their free energies.</p> <p>Conclusion</p> <p>Quantitative results demonstrate our method's ability to predict known hinges from the Database of Macromolecular Motions.</p

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop

    Get PDF
    The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its β-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24′s annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly

    Contemporary Homozygous Familial Hypercholesterolemia in the United States: Insights From the CASCADE FH Registry

    Get PDF
    Erratum in: J Am Heart Assoc. 2023 Jun 6;12(11):e027706. doi: 10.1161/JAHA.122.027706. Epub 2023 Jun 1.Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227232/Background: Homozygous familial hypercholesterolemia (HoFH) is a rare, treatment-resistant disorder characterized by earlyonset atherosclerotic and aortic valvular cardiovascular disease if left untreated. Contemporary information on HoFH in the United States is lacking, and the extent of underdiagnosis and undertreatment is uncertain. Methods and Results: Data were analyzed from 67 children and adults with clinically diagnosed HoFH from the CASCADE (Cascade Screening for Awareness and Detection) FH Registry. Genetic diagnosis was confirmed in 43 patients. We used the clinical characteristics of genetically confirmed patients with HoFH to query the Family Heart Database, a US anonymized payer health database, to estimate the number of patients with similar lipid profiles in a “real-world” setting. Untreated lowdensity lipoprotein cholesterol levels were lower in adults than children (533 versus 776mg/dL; P=0.001). At enrollment, atherosclerotic cardiovascular disease and supravalvular and aortic valve stenosis were present in 78.4% and 43.8% and 25.5% and 18.8% of adults and children, respectively. At most recent follow-up, despite multiple lipid-lowering treatment, low-density lipoprotein cholesterol goals were achieved in only a minority of adults and children. Query of the Family Heart Database identified 277 individuals with profiles similar to patients with genetically confirmed HoFH. Advanced lipid-lowering treatments were prescribed for 18%; 40% were on no lipid-lowering treatment; atherosclerotic cardiovascular disease was reported in 20%; familial hypercholesterolemia diagnosis was uncommon. Conclusions: Only patients with the most severe HoFH phenotypes are diagnosed early. HoFH remains challenging to treat. Results from the Family Heart Database indicate HoFH is systemically underdiagnosed and undertreated. Earlier screening, aggressive lipid-lowering treatments, and guideline implementation are required to reduce disease burden in HoFH.Dr Martin is supported by grants/contracts from the American Heart Association (20SFRN35380046, 20SFRN35490003, 878924, and 882415), Patient‐Centered Outcomes Research Institute (PCORI) (ME‐2019C1‐15328), National Institutes of Health (NIH) (R01AG071032 and P01 HL108800), the David and June Trone Family Foundation, Pollin Digital Health Innovation Fund, and Sandra and Larry Small; Dr Knowles is supported by the NIH through grants P30 DK116074 (to the Stanford Diabetes Research Center), R01 DK116750, R01 DK120565, and R01 DK106236; and by a grant from the Bilateral Science Foundation. Dr Linton is supported by NIH grants P01HL116263, HL148137, HL159487, and HL146134.info:eu-repo/semantics/publishedVersio

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore